A multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform
نویسنده
چکیده
A novel methodology based on multiscale spectral and spatial information fusion using wavelet transform is proposed in order to classify very high resolution (VHR) satellite imagery. Conventional wavelet-based feature extraction methods employ single windows of a fixed size, which are not satisfactory as the VHR imagery contains complex and multiscale objects. In this paper, spectral and spatial features are extracted based on a set of concentric windows around a central pixel in order to integrate the information across different windows/ scales. The proposed method is made up of three blocks: (1) the conventional wavelet-based feature extraction methods are extended from single band processing to multispectral bands, and from single window to multi-windows, (2) two multiscale fusion algorithms are proposed to exploit the multiscale spectral and spatial information and (3) a support vector machine (SVM), a relatively new method of machine learning, is used to classify the multiscale spectral–spatial feature sets. The proposed classification method is evaluated on two VHR datasets and the results show that the multiscale approach can improve the classification accuracy in homogeneous areas while simultaneously preserving accuracy in edge regions.
منابع مشابه
A contextual classification scheme based on MRF model with improved parameter estimation and multiscale fuzzy line process
A Markov random field (MRF) based method using both contextual information and multiscale fuzzy line process for classifying remotely sensed imagery is detailed in this paper. The study area known as Elkhorn Slough is an important natural reserve park located in the central California coast, USA. Satellite imagery such as IKONOS panchromatic and multispectral data provides a convenient way for ...
متن کاملFusion Framework for Emotional Electrocardiogram and Galvanic Skin Response Recognition: Applying Wavelet Transform
Introduction To extract and combine information from different modalities, fusion techniques are commonly applied to promote system performance. In this study, we aimed to examine the effectiveness of fusion techniques in emotion recognition. Materials and Methods Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy female students (mean age: 22.73±1.68 years) were collected ...
متن کاملObject Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images
Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...
متن کاملAn IHS based Multiscale Pansharpening Technique using Wavelet based Image Fusion and Saliency Detection
With the advent of remote sensing, the requirement of high resolution images that can provide high quality spectral and spatial information has increased. Due to cost and circuitry issues, the satellite sensors are capable of providing either multispectral (MS) images with high spectral and low spatial resolution or Panchromatic (pan) images with high spatial and low spectral resolution. Pansha...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کامل